چارچوب عملیاتی جهت طراحی ساختمان فرم- انرژی کارا: (نمونه موردی: ساختمان‌های اداری بزرگ مقیاس شهر تهران)

نوع مقاله : پژوهشی اصیل

نویسندگان

1 دانش آموخته دکتری تخصصی، گروه معماری، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران.

2 دانشیار، گروه معماری، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران.

3 استادیار، گروه معماری، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران.

چکیده
اهداف: نور و شرایط حرارتی با اثر بر کیفیت فعالیت‌های ذهنی و فیزیکی نقش کلیدی در عملکرد کاربران ساختمان‌های اداری دارند. از آنجا که فرم نحوه مواجهه ساختمان با عوامل محیطی را تعریف می‌کند، می‌تواند با کمک به تامین روشنایی طبیعی و شرایط حرارتی مناسب، علاوه بر کاهش مصرف انرژی موجب ارتقاء بهره‌وری اداری در این بناها نیز گردد. ارزیابی عملکرد فرم ساختمان‌های اداری بزرگ مقیاس تهران و دستیابی به گونه شکلیِ بهینه فرم جهت تامین سالانه آسایش‌حرارتی و بصری‌نوری منطبق بر ویرایش چهارم مبحث نوزده (م.م.س) هدف این پژوهش است.

روش‌ها: این پژوهشِ کاربردی از نوع نظریه-ساخت بوده که در راستای دستیابی به اهداف، رابطه بین هندسه فرم و متغیرهای sDA، DGP و PMV را مورد بررسی قرار داده است. روش تحقیق توصیفی-تحلیلی بوده، داده‌های اولیه پس از استخراج کتابخانه‌ای به صورت میدانی صحت‌سنجی شده و با نرم‌افزارهای دیزاین‌بیلدر و پلاگین هانی‌بی در گرسهاپر مورد مدل‌سازی و شبیه‌سازی قرار گرفته‌اند. همچنین آنالیز داده‌های حاصل از شبیه‌سازی با تفسیر و مقایسه انجام شده است.

یافته‌ها: فرم مستطیل شکل با دو حیاط مرکزی دارای بهترین وضعیت در شاخص PMV و بدترین از نظر DGP می‌باشد. زیرگونه‌ پیشنهادی از فرم مذکور با نسبت هسته‌به‌پوسته 2:1 با حفظ شرایط PMV توانست از منظر sDA و DGP نیز در حالت استاندارد قرار گیرد.

نتیجه‌گیری: فرم اغلب این بناها جهت تامین شرایط آسایش‌حرارتی و بصری‌نوری طبق مبحث نوزدهم مناسب نیست. طراحان می‌توانند از فرم مستطیل‌شکل با نسبت پیشنهادی هسته‌به‌پوسته 2:1 جهت تامین شرایط و کسب رده EC این مبحث استفاده نمایند.

کلمات کلیدی: آسایش حرارتی، آسایش بصری، عملکرد ساختمان، کاربری اداری، مبحث نوزده.

کلیدواژه‌ها

موضوعات


[1] Haerizadeh, s.m.s., Ghomeishi, M. (2021). Effective environmental factors in the design of office buildings. Shebak (60): 73-82.
[2] Mohammadi, A., Ayatollahi, S. M. H., & Mousavi, S. M. (2023). Improving Iranian National Standard (INS) Indices for building energy performance through comparing with LEED Standard: Case Study of Office Buildings in Tehran. Journal of Architecture in Hot and Dry Climate, 10(16), 113-129.
[3] Jalaeian Ghane,N., & Aeini, S. (2023). Study the effect of the Second Facade and its geometry on daylight control in office spaces (modeling and Daylight analysis by Diva software). Architectural Technologies Studies, 4(2): 73-94.
[4] Mostafavi A, Soheili J, Pour Dehghan H. Optimizing the form with the aim of achieving high-performance building in future cities (Case study: large-scale office buildings in Tehran). JFCV 2024; 5 (1): 23-43.
[5] Hong, T., D'Oca, S., Taylor-Lange, S. C., Turner, W. J. N., Chen, Y., & Corgnati, S. P. (2015). An ontology to represent energy-related occupant behavior in buildings. Part II: Implementation of the DNAS framework using an XML schema. Building and Environment, 94, 196-205.
[6] Zhang, Ji., Xu, Le., Shabunko, Veronika., Tay, Stephen En Rong., Sun, Huixuan., Lau, Stephen Siu Yu & Reindl, Thomas. (2019). "Impact of urban block typology on building solar potential and energy use efficiency in tropical high-density city." Applied Energy 240: 513-533.
[7] Ansarimanesh, M., Nasrollahi, N., & Mahdavinejad, M. J. (2019). Determination of the Optimal Orientation in the Cold Climate Administrative Buildings; Case Study: Kermanshah. Armanshahr Architecture & Urban Development, 12(27), 1-9.
[8] Won, Chung Yeon., No, Sang Tae., Alhadidi, Qamar. (2019). Factors Affecting Energy Performance of Large-Scale Office Buildings: Analysis of Benchmarking Data from New York City and Chicago. Energies, 12(24), 4783. MDPI AG.
[9] Tibermacine, I. and N. Zemmouri .(2017). "Effects of building typology on energy consumption in hot and arid regions." Energy Procedia 139: 664-669.
[10] Li, D. H. ., & Lam, J. C. (2000). Solar heat gain factors and the implications to building designs in subtropical regions. Energy and Buildings, 32(1), 47–55.
[11] Taleb, S., Yeretzian, A., Jabr, R. A., & Hajj, H. (2019). Optimization of building form to reduce incident solar radiation. Journal of Building Engineering, 101025.
[12] Shafiei, M., Fayaz, R., Heidari, S. (2014). The appropriate form of tall building for receiving solar energy in Tehran. NECjournals 16(4): 47-60.
[13] Catalina, Tiberiu., Virgone, Joseph., Iordache, Vlad. (2011). Study on the impact of the building form on the energy consumption. Proceedings of Building Simulation 2011: 12th Conference of International Building Performance Simulation Association, 1726-1729.
[14] Yeang, K. (2006). EcoDesign : A manual for ecological design. John Wiley & Sons.
[15] Saadatjoo P, Saligheh E. (2021). The Role of Buildings Distribution Pattern on Outdoor Airflow and Received Daylight in Residential Complexes; Case study: Residential Complexes in Tehran. Naqshejahan; 11 (3) :67-92.
[16] Wang, W., Rivard, H., & Zmeureanu, R. (2006). Floor shape optimization for green building design. Advanced Engineering Informatics, 20(4), 363–378.
[17] Okeil, A. (2004). In search for energy efficient urban forms: the residential solar block. Proceedings of the 5th International Conference on Indoor Air Quality, Ventilation and Energy Conservtion in Buildings Proceedings, Toronto, ON, Canada.
[18] Malek, A., & Talaei, A. (2023). A Comparative Study of Kinetic Facades of Office Buildings in Tehran Based on the Visual Comfort with (sDG) and (DGP) indices. Architectural Technologies Studies, 5(3): 85-102.
[19] Shafavi Moqaddam, N., Tahsil-doust, M., & Zomorrodiyan, Z. (2022). Evaluating the Effectiveness of Daylight Performance Metrics in Predicting Visual Comfort Case Study: Educational Architecture Design Studios in Tehran. Journal of Iranian Architecture Studies, 8(16), 205-228.
[20] Jaberi, A., & Gharibpour, A. (2023). Evaluation of the shape plan, orientation, and ceiling height on daylight performance of tall office buildings in Tehran, Iran. Journal of Architectural Thought, 7(13).
[21] Okeil, A. (2010). "A holistic approach to energy efficient building forms." Energy and Buildings 42(9): 1437-1444.
[22] Jalali, Z., Noorzai, E., & Heidari, S. (2019). Design and optimization of form and façade of an office building using the genetic algorithm. Science and Technology for the Built Environment, 1–41.
[23] Ratti, C., et al. (2003). "Building form and environmental performance: archetypes, analysis and an arid climate." Energy and Buildings 35(1): 49-59.
[24] Taleghani, M., et al. (2013). "Energy use impact of and thermal comfort in different urban block types in the Netherlands." Energy and Buildings 67: 166-175.
[25] Akbari, H., Ebrahimi, E. (2020) .Climatic Design of Form, Aspect Ratio and Building’s Orientation Based on Solar Radiation in Tehran. Journal of Studies of Human Settlements Plannings. (15)4: 1175-1188.
[26] Ahmadzadeh Sorkhkalaei M, kord Jamshidi M. (2019). Studying the influential factors in the formation of sustainable architecture with emphasis on the form of building (Case Study: Savadkouh city). IJE; 21 (4) :53-74.
[27] Kasmaei, M. (2016). Climate and Architecture: (V8). Isfahan: Khak, 304 pp.
[28] Shiri T, Didehban M, Taban M. (2020). Effect of Form on Shading amount and heat Absorption in Domes of YAZD AB ANBARS. Jria; 7 (4) :75-92.
[29] Mokhtari, L., Mahdavinejad, M., Kariminia, S., Kianersi, M.. (2019). The Effect of General Form and Relative Compactness of Tehran Residential Buildings on Pollution Resulted from Heating in Winter Season. Journal of Environmental Studies 45(2): 253-268.
[30] Djongyang, N., Tchinda, R., & Njomo, D. (2010). Thermal comfort: A review paper. Renewable and Sustainable Energy Reviews, 14(9), 2626–2640.
[31] Haji Azimi, Ehsan, Khavaanin, Ali, Aghajani, Majid, Soleimanian, Ardalan. (2013). Calculation of thermal stress based on the WBGT index in the metal smelting industry. Journal of Military Medicine, 13(48): 59-64.
[32] Kasteren, Y. v., Champion, S., & Perimal-Lewis, L. (2019). Thermal comfort and physical activity in an office setting. Paper presented at the Proceedings of the Australasian Computer Science Week Multiconference, Sydney, NSW, Australia.
[33] Van Hoof, J. (2008). Forty years of Fanger’s model of thermal comfort: comfort for all? Indoor Air, 18(3), 182–201.
[34] Fallah Ghalhari G, Mayvaneh F, Shakeri F. Evaluation of thermal comfort and human health using Universal Thermal Climate Index (UTCI) Case Study: Kurdistan province. ijhe 2015; 8 (3) :367-378
[35] Sadeghi Ravesh, Mohamadhasan, Tabatabaiea, S.Mahdi. (2009). Determining the range of thermal comfort in dry weather conditions (case study: Yazd city). Hoviat E Shahr, 3(4): 39.
[36] Zhao, Q., Lian, Z., & Lai, D. (2020). Thermal Comfort models and their developments: A review. Energy and Built Environment.
[37] Najafi, S.M.A., Najafi, Najmeh. (2012). Investigation of thermal comfort using PMV and PPD methods. Haft Hesar Journal of Environmental Studies, 1(1): 61-70.
[38] Fadaii Ardestani, M. A., Nasseri Mobaaraki, H., Ayatollahi, M. R., & Zomorrodian, Z. S. (2018). The Assessment of Daylight and Glare in Classrooms Using Dynamic Indicators; the Case of SBU Faculty of Architecture and Urban Planning. Soffeh, 28(4), 25-40.
[39] Eble-Hankins, M. L., & Waters, C. E. (2005). VCP and UGR Glare Evaluation Systems: A Look Back and a Way Forward. LEUKOS, 1(2), 7–38.
[40] Mansouri kivaj, F., & Ziyabakhsh, N. (2023). Evaluation of the Role of Daylight in Promoting Freshness in High-rise Apartment Complexes; Case Study: Tehran City. Journal of Space and Place Studies, 1(3), 81-90.
[41] Amini Badr, F., Mokhtabad Amrei, M., & Majedi, H. (2020). Analysis of the Presence of Light in Rasteh and Charsooq of the Grand (Qeysarriyeh) Bazaar of Isfahan. Journal of Iranian Architecture & Urbanism(JIAU), 11(1), 5-24.
[42] Mohammadi, F., Mofidi Shemirani, S. M., & Tahbaz, M. (2020). Evaluation and Analysis of the Efficiency of Dynamic Metrics Evaluating Daylight Performance (Daylight Autonomy and Useful Daylight Illuminance) through Sensitivity Analysis; Case Study: Elementary Classroom in Tehran. Armanshahr Architecture & Urban Development, 13(31), 145-156.
[43] Pourahmadi, M., khanmohamadi, M., & mozafar, F. (2021). Investigation the Performance of Glare Indices in Iran's Hot and Dry Climate. Journal of Environmental Science and Technology, 23(1), 41-52.
[44] Oh, M., & Kim, Y. (2019). Identifying urban geometric types as energy performance patterns. Energy for Sustainable Development, 48, 115–129.
[45] Yu, Z., Fung, B. C. M., Haghighat, F., Yoshino, H., & Morofsky, E. (2011). A systematic procedure to study the influence of occupant behavior on building energy consumption. Energy and Buildings, 43(6), 1409–1417.
[46] Daemei, A. B., Limaki, A. K., & Safari, H. (2016). Opening Performance Simulation in Natural Ventilation Using Design Builder (Case Study: A Residential Home in Rasht). Energy Procedia, 100, 412–422.
[47] Farrokhi, M., Izadi, M. S., & Karimi Moshaver, M. (2022). Analysis of Energy Efficiency of Urban Fabrics in the Hot and Dry Climates, Case Study: Isfahan. Journal of Iranian Architecture Studies, 7(13), 127-147.
[48] Blanco, J. M., Buruaga, A., Rojí, E., Cuadrado, J., Pelaz, B. (2016). Energy assessment and optimization of perforated metal sheet double skin façades through Design Builder; A case study in Spain. Energy and Buildings, 111, 326–336.
[49] Office of National Building Regulations (ONBR). (2020). Topic 19 energy saving. Tehran: Tose-eye Iran.
[50] Heydari, E., Mehdinezhad, J., Doulabi, P. (2022). Strategic Principles of Designing the form of a Residential Building in Bushehr Based on Reducing Energy Consumption. Karafan Quarterly Scientific Journal, 18(4), 345-361. doi: 10.48301/kssa.2022.306864.1761.
[51] Sanaieian, H., & Ghorabi, S. F. (2020). Review of the Impact of Urban Block Form on Energy Demand and Solar Access. Journal of Sustainable Architecture and Urban Design, 7(2), 23-36. doi: 10.22061/jsaud.2019.4753.1418.
[52] Madahi, S.M., Tavanaiee, F. (2019). Optimization of thermal performance of external walls of residential building in cold and dry climate by Utilizing the Energy Simulation Software (Case Study: Mashhad, Iran). JOURNAL OF ENERGY MANAGEMENT, 9(3 ), 108-121.
[53] Sanayeayan, H., Mehdizadeh Seraj, F., Nasrollahi, F., & Mofidi Shemirani, S. M. (2013). The Impact of Adjacencies on Interior Thermal Behavior. Soffeh, 23(4), 35-46.
[54] Zare Mohazzabieh, A., Heydari, S., & Shahcheraghi, Azadeh. (2020). Indoor Environmental Quality in Qajar Houses of Shiraz with an emphasis on Thermal Comfort and Daylighting (case study: Nemati House). Journal of Architecture in Hot and Dry Climate, 7(10), 269-291.
[55] Neshat Safavi, S.H., Zolfagharzadeh, H., Mafi, M., & Esfandiari, A. (2022). Optimization the Position of the Windows for Improved Natural Ventilation, Thermal Comfort and Daylight in Yazd City. Karafan Quarterly Scientific Journal, 18(4), 395-410.