کاربرد روش های یادگیری ماشینی در حوزه طراحی محیط مصنوع

نوع مقاله : پژوهشی اصیل

نویسندگان

1 دانشکده عمران، معماری و هنر ، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران ، ایران.

2 استاد گروه معماری دانشگاه تربیت مدرس

3 دانشکده عمران، معماری و هنر ، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

چکیده
اهداف: امروزه استفاده از هوش مصنوعی رشد چشمگیری داشته، و به عنوان یک حوزه نوین در حال پیشرفت است. هدف اصلی این پژوهش، شناخت ظرفیت های هوش مصنوعی در پیشبرد فرآیند طراحی و اجرا در محیط مصنوع است. هدف کاربردی پژوهش، توسعه و کاربردی سازی مهمترین دستاوردهای یادگیری ماشینی و در حوزه طراحی است.

روش­ها: روش تحقیق اصلی پژوهش «فراتحلیل» در پارادایم «آزادپژوهی» با رویکرد انتقادی و طراحی مبنا است که با استفاده از تکنیک های پهنانگر، حوزه کلی دانشی این حوزه را بررسی می کند. سپس به منظور تثبیت اشراف به ادبیات موضوع، از طریق جستوجو در سه پایگاه های معتبر دانشی این حوزه، نسبت به جمع آوری مقالات مرتبط به یادگیری ماشین در حوزه های روش های یادگیری بدون نظارت، یادگیری نیمه نظارتی و یادگیری تقویتی اقدام شده؛ مهمترین ظرفیت ها و کاستی ها، و نقاط قوت و ضعف مورد نقد و بررسی قرار می گیرد.

یافته­ ها: یافته های کمی حاصل از داده های ترکیب شده بیانگر آن است که یادگیری ماشینی تحت نظارت و یادگیری عمیق هدایت شده، می تواند بهترین گزینه برای توصیه در آینده طراحی باشد. در حالی که فرآیند یادگیری در یادگیری عمیق تدریجی و کندتر است، یادگیری ماشینی تحت نظارت در مرحله آزمون و تست سریع تر عمل می­کند.

نتیجه ­گیری: نتایج پژوهش تاکید دارد که یادگیری ماشینی تحت نظارت، بهترین گزینه برای پیش بینی پاسخ ها در فرآیند طراحی است اما در صورتی که علاوه بر پیش بینی، موضوع خلاقیت در طراحی مورد نظر باشد، یادگیری عمیق کارآمدتر است.

کلیدواژه‌ها

موضوعات


[1] Haenlein, M. Kaplan, A. (2019). A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. 61(4). https://doi.org/10.1177/0008125619864925
[2] Mohammed, M. Badruddin Khan, M. Mohammed Bashier, E.B. (2017). Machine Learning: Algorithms and Applications. London; Taylor & Francis Group. https://doi.org/10.1201/9781315371658
[3]Eslamirad, N. Kolbadinejad S.M. Mahdavinejad, M. Mehranrad, M. (2020). Thermal comfort prediction by applying supervised machine learning in green sidewalks of Tehran. Smart and Sustainable Built Environment.9(4):361-374. https://doi.org/10.1108/SASBE-03-2019-0028
[4] Beale, R. Jackson, T. (1990) . Neural Computing-An Introduction. Florida: CRC Press, Boca Raton. https://doi.org/10.1201/9781420050431
[5] Jordan, M.I. Mitchell, T.M. (2015). Machine learning: Trends,perspectives, and prospects. Science. 349. 255-260. http://dx.doi.org/10.1126/science.aaa8415
[6]Amini, M. Mahdavinejad, M. Bemanian, M.(2019) Future of Interactive Architecture in Developing Countries: Challenges and Opportunities in Case of Tehran. Journal of Construction in Developing Countries. 24(1):163-84. https://doi.org/10.21315/jcdc2019.24.1.9
[7] Goodarzi, P. Ansari, M. Rahimian, F.P. Mahdavinejad, M. Park, C.(2023).Incorporating sparse model machine learning in designing cultural heritage landscapes. Automation in Construction. 155. https://doi.org/10.1016/j.autcon.2023.105058
[8] Shalev-Shwartz, S. Ben-David, S. (2014). Understanding Machine Learning: From Theory to Algorithms. Cambridge. Cambridge University Press. https://doi.org/10.1017/CBO9781107298019.
[9] D. Penney, D. Chen, L. (2019). A Survey of Machine Learning Applied to Computer Architecture Design. Arxiv. 1-14. https://doi.org/10.48550/arXiv.1909.12373
[10] Rahbar, M, Mahdavinejad, M, Markazi, A.H.D. Bemanian, M. (2022) Architectural layout design through deep learning and agent-based modeling: A hybrid approach. Journal of Building Engineering.47, 103822. https://doi.org/10.1016/j.jobe.2021.103822
[11] Shabbir, J. Anwer, T. (2015). Artificial Intelligence and its Role in Near Future. Journal of Latex Class Files. 14(8). 1-11. https://doi.org/10.48550/arXiv.1804.01396
[12] Rahbar, M. Mahdavinejad, M. Bemanian, M. Davaie-Markaz, A.(2020). Generating space layout heat maps with cGAN algorithms in artificial intelligence. Armanshahr Architecture. Urban Development. 13(32):131-142. https://doi.org/10.22034/aaud.2020.154406.1717
[13] Rahbar, M. Mahdavinejad, M. Bemanian, M. Markazi,D. (2020) A. Artificial neural network for outlining and predicting environmental sustainable parameters. Journal of Sustainable Architecture and Urban Design.7(2):169-182. https://doi.org/10.22061/jsaud.2019.4501.1333 .
[14] Muhammad, I. Yan, Z. (2015). Supervised Machine Learning Approaches : a Survay. ICTACT Journal on Soft Computing. 5(3). 945-952. https://doi.org/10.48550/arXiv.1904.01460
[15] Kotsiantis, S.B.(2007) Supervised Machine Learning: A Review of Classification Techniques. Informatica.31(3). 249-268. ISSN: 0350-5596 https://dl.acm.org/doi/10.5555/1566770.1566773
[16] Usama, M. Qadir, J. Raza,A. Arif,H. Alvin yau,K. Elkhatib, Y. Hussain,A. Al-fuqaha, A.(2019). Unsupervised Machine Learning for Networking:Techniques, Applications and Research Challenges. Journal of IEEE Access. 7. 65579-65615. https://doi.org/10.48550/arXiv.1709.06599
[17] Khanum, M. Mahboob, T. Imtiaz, W. Abdul Ghafoor, H. Sehar.R. (2015). A Survey on Unsupervised Machine Learning Algorithms for Automation, Classification and Maintenance. International Journal of Computer Applications. 119(13). 34-39. http://dx.doi.org/10.5120/21131-4058
[18] Simeone,S. (2017). Brief Introduction to Machine Learning for Engineers. London : King’s College London. https://doi.org/10.48550/arXiv.1709.02840
[19] Sharma, D.& Kumar,N. A Review on Machine Learning Algorithms, Tasks and Applications. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET). (2017) 6(10). 1353-1360. https://www.scirp.org/reference/referencespapers?referenceid=2918741
[20] Llamas, J. M. Lerones, P. Medina, R. Zalama, E. García-Bermejo, J.G.(2017). Classification of Architectural Heritage Images Using Deep Learning Techniques. Applied Sciences. 7(10). 1-26. http://dx.doi.org/10.3390/app7100992
[21] LeCun, Y. Bengio, Y. Hinton, G. (2015) G. Deep learning. Nature. 521. 436-444. http://dx.doi.org/10.1038/nature14539
[22] Cioffi, R. Travaglioni,M. Piscitelli, G. Petrillo, A. De Felice, F. (2020). Artificial Intelligence and Machine Learning Applications in Smart Production: Progress, Trends, and Directions. Sustainability. 12(2). 1-26. https://doi.org/10.3390/su12020492
[23] Khean, K. Fabbri,A. Haeusler.M.H. (2018). Learning Machine Learning as an Architect, How to?. eCAADe 36(1). 95-102. http://dx.doi.org/10.52842/conf.ecaade.2018.1.095 .
[24] Papasotiriou, T. (2019). Identifying the Landescape of Machine Learning Aided Architectural Design a Term Clustering and Scientometrics Study. International Conference of CAADRIA. 815-824. http://dx.doi.org/10.52842/conf.caadria.2019.2.815
[25] Tamke, M. Nicholas, P. Zwierzycki, M. (2018). Machine learning for architectural design. practices and infrastructure. International Journal of Architectural Computing. 16(2). 123-143. http://dx.doi.org/10.1177/1478077118778580
[26] Das, S. (2018) . Interactive Artificial Life Based Systems, Augmenting Design Generation and Evaluation by Embedding Expert Opinion A Human Machine dialogue for form finding. ECAADe. 36(1). 85-94. https://doi.org/10.52842/conf.ecaade.2018.1.085
[27] Racec,E. Budulan, S. Vellido,A. (2016). Computational Intelligence in architectural and interior design:a state-of-the-art and outlook on the field. Department of Computer Science (CS) and to the Universitat Politècnica de Catalunya,Barcelona, Spain. 1-10. https://www.cs.upc.edu/~avellido/research/RacecBudulanVellido_CCIA16.pdf
[28] Okhoya, V. (2020). Machine Learning for Multi-Discipline Parametric Analysis in Architectural Practice. Pennsylvania: Carnegie Mellon University. https://kilthub.cmu.edu/articles/thesis/Machine_Learning_for_Multi-Discipline_Parametric_Analysis_in_Architectural_Practice/11926932
[29] Michalek, J. Choudhary, R. Papalambros, P. (2002). Architectural Layout Design Optimization. Engineering Optimization 34(5). 461-484. http://dx.doi.org/10.1080/03052150214016
[30] Merrell, P. Schkufza, E. Koltun, V. (2010). Computer-Generated Residential Building Layouts. 29(6). 1-13. http://dx.doi.org/10.1145/1882261.1866203.
[31] Ferrando, C. (2018). Towards a Machine Learning Framework in Spatial Analysis, Master of Science (MS). Pennsylvania: Carnegie Mellon University , Pittsburgh. https://kilthub.cmu.edu/articles/thesis/Towards_a_Machine_Learning_Framework_in_Space_Syntax/7178417
[32] Al-Wattar,A. Areibi,S. Grewal,G. (2015). An Efficient Framework for Floor-plan Prediction of Dynamic Runtime Reconfigurable Systems. International Journal of Reconfigurable and Embedded Systems. 4(2) 99-121. https://doi.org/10.48550/arXiv.1611.05438
[33] M¨uller, P. Zeng,G. Wonka, P. Van Gool, L. (2007) Image-based Procedural Modeling of Facades. ACM Transactions on Graphics. 26(3). http://dx.doi.org/10.1145/1275808.1276484
[34] Udousoro, I. C. (2020). Machine Learning: A Review. Semiconductor Science and Information Devices, 2(2), 5–14. https://doi.org/10.30564/ssid.v2i2.1931
[35] Perez, J.A. Deligianni, F. Ravi, D. Yang, J.Z. (2018) . Artificial Intelligence and Robotics , Published by Arxiv in Cornell University.https://doi.org/10.48550/arXiv.1803.10813 .
[36] Chahal1, A. Gulia, P. (2019). Machine Learning and Deep Learning. International Journal of Innovative Technology and Exploring Engineering (IJITEE). 8 (12). 4910-4914. http://dx.doi.org/10.35940/ijitee.L3550.1081219
[37] Janiesch, C. Zschech, P. Heinrich, K. (2021). Machine learning and deep learning. International Journal of Electronic Market. 31. 685–695. https://doi.org/10.1007/s12525-021-00475-2
[38] Naeem,M. Hussain Rizvi ,S.T. Coronato, A.(2020). A Gentle Introduction to Reinforcement Learning and its Application in Different Fields. IEEE Access. 8. 209320 – 209344. https://doi.org/10.1109/ACCESS.2020.3038605
[39] Cudzik, J. Radziszewski, K. (2018). Artificial Intelligence Aided Architectural Design. ECAADe .36(1). 77-84. https://doi.org/10.52842/conf.ecaade.2018.1.077 .
[40] Yang, L. Cervone,G. (2019). Analysis of remote sensing imagery for disaster assessment using deep learning: a case study of flooding event. Journal Soft Computing. 23(24). 13393-13408. http://dx.doi.org/10.1007/s00500-019-03878
[41] Hao, Z. (2019). Deep learning review and discussion of its future development. MATEC Web Conf. 277. https://doi.org/10.1051/matecconf/201927702035
[42] Yang, L. , MacEachren, A.M. Mitra, P. Onorati, T.(2018). Visually-Enabled Active Deep Learning for (Geo) Text and Image Classification: A Review. International Journal of Geo-Information. 7(2). 1-38. https://doi.org/10.3390/ijgi7020065
[43] Yoshimura,Y. Zhoutong Wang, B. Ratti , C. (2018). Deep Learning Architect: Classification for Architectural Design through the Eye of Artificial Intelligence. Arxiv in Cornell University. 1-22. https://doi.org/10.48550/arXiv.1812.01714
[44] Goodman, G. (2019). A Machine Learning Approach to Artifificial Floorplan Generation. Kentucky : Lexington, Kentucky. https://doi.org/10.13023/etd.2019.391
[45] Llamas, J. M. Lerones, P. Medina, R. Zalama, E. Gómez, G.B. (2017). Classification of Architectural Heritage Images Using Deep Learning Techniques. Applied Sciences. 7(10). 1-25. http://dx.doi.org/10.3390/app7100992
[46] Jankovi, R. (2019). Machine Learning Models for Cultural Heritage Image Classification: Comparison Based on Attribute Selection. Information 2020, 11(1), 12. 1-13. https://doi.org/10.3390/info11010012
[47] Do, L. Swamy, M.N.S. (2013). Neural Networks and Statistical Learning. London. Springer. ISBN 978-1-4471-5571-3. https://doi.org/10.1007/978-1-4471-5571-3
[48] Popescu,M. Balas, V.E. Mastorakis, N.E. Popescu. L.P. (2009). Multilayer perceptron and neural networks. Journal of WSEAS Transactions on Circuits and Systems. 7(8). 579-588. https://doi.org/10.5555/1639537.1639542
[49] As, I. Pal,S. Basu,P. (2018). Artificial intelligence in architecture:Generating conceptual design via deep learning. International Journal of Architectural Computing, 16(4) 306-327. http://dx.doi.org/10.1177/1478077118800982
[50] Radziszewski, K. (2017). Artificial Neural Networks as an Architectural Design Tool-Generating New Detail Forms Based On the Roman Corinthian Order Capital. IOP Conference Series: Materials Science and Engineering. 245(6). 1-8. http://dx.doi.org/10.1088/1757-899X/245/6/062030
[51]Ganji Kheybari A, Diba D, Mahdavinejad M, Shahcheraghi A.(2015). Algorithmic Design of Palekane in Order to Increase Efficiency of Daylighting in Buildings. Armanshahr Architecture & Urban Development, Spring 8(1):35-52. [Persian] Available at: http://www.armanshahrjournal.com/article_39305_6474c6c97b35674314f99f744a694497.pdf
[52] Goodarzi, P. Ansari, M. Mahdavinejad, M. Russo A, Haghighatbin, M. Rahimian, F.P.(2023) Morphological analysis of historical landscapes based on cultural DNA approach. Digital Applications in Archaeology and Cultural Heritage.1;30:e00277. https://doi.org/10.1016/j.daach.2023.e00277
[53] Kasraei, M.H. Nourian, Y. Mahdavinejad, M.(2016) Girih for domes: analysis of three Iranian domes. Nexus Network Journal. 18(1):311-21. https://doi.org/10.1007/s00004-015-0282-4
[54] Mashhadi Abolghasem Shirazi, M. Diba, D. Mahdavinejad, M. (2023). Economy-based Contemporization and Preservation of Contemporary Architectural Heritage; Strategies for Action in Residential Buildings from the 1950s to the 1970s. The Monthly Scientific Journal of Bagh-e Nazar. 20(126): 69-80. (doi: 10.22034/bagh.2023.374094.5297) https://www.bagh-sj.com/article_181097.html?lang=en
[55] Tadayon, K. Mahdavinejad, M. Shahcheraghi, A. (2021) Advanced mathematical algorithms to outline integrated architectural design process. Journal of Sustainable Architecture and Urban Design.23;9(1):1-12. https://doi.org/10.22061/JSAUD.2020.6603.1686
[56] Kouchaki, M. Mahdavinejad, M. Zali, P. Ahmadi, S. (2016). Magnet-based Interactive Kinetic Bricks. eCAADe 2016 - 34th Annual Conference. University of Oulu, Oulu, Finland.1.213-218. https://papers.cumincad.org/data/works/att/ecaade2016_215.pdf
[57] Mansourimajoumerd, P. Mahdavinejad, M. (2018) . Kinetic Architecture: Reinterpreting Persian Mathematics and Astronomy. eCAADe 2018 - 36th Annual Conference.Lodz, Poland.1.605-612. http://dx.doi.org/10.52842/conf.ecaade.2018.1.605
[58] Haghighi, M.Y. Mahdavinejad, M. (2020). Heliophilia Intelligent Kinetic Canopy. , eCAADe 2020: 38th Annual Conference on Education and research in Computer Aided Architectural Design in Europe, TU-Berlin, Germany. 2. 243-250. http://papers.cumincad.org/data/works/att/ecaade2020_197.pdf
[59] Javidannia, G. Bemanian, B. Mahdavinejad, M. (2020). Performance Oriented Design Framework for Early Tall Building form Development: Seismic architecture view. eCAADe 2020: 38th Annual Conference on Education and research in Computer Aided Architectural Design in Europe, TU-Berlin, Germany.2. 381-390. (ID: D2.T9.S1. ecaade2020_069). http://papers.cumincad.org/data/works/att/ecaade2020_069.pdf
[60] Rezaeicherati, A. Mahdavinejad, M. (2020). SoRo Responsive Wall: Soft robotics for human-oriented architecture. eCAADe 2020: 38th Annual Conference on Education and research in Computer Aided Architectural Design in Europe, TU-Berlin, Germany. 2 .623-630. (ID: D2.T10.S2. ecaade2020_335). http://papers.cumincad.org/data/works/att/ecaade2020_335.pdf